
 305

South Asian Studies
A Research Journal of South Asian Studies
Vol. 31, No. 1, January – June 2016, pp. 305 – 318

A Strategy for the Promotion of Computer
Programming Using Urdu Language in Pakistan

Kamran Abid
University of the Punjab, Lahore.
Adnan Abid
University of Managemengt and Technolgy Punjab, Lahore.
Muhammad Shoaib Farooq
University of Managemengt and Technolgy Punjab, Lahore.
Uzma Farooq
University of Managemengt and Technolgy Punjab, Lahore.
Ansar Abbas
University of Managemengt and Technolgy Punjab, Lahore.

ABSTRACT

Software industry has proven to be a stepping stone towards changing the rank of a country in the
comity of nations. In South Asian region, India has immensely excelled her economic growth by
increasing its revenues with the help of software export. The development of software involves
man power with technical support, where the premier focus in on computer programming.
Therefore, producing a large number of skillful computer programmers in Pakistan would
certainly help the cause of establishing software houses, which in turn, will attract the western
world to outsource their software projects to Pakistan. Like India, this can certainly act like a
game changer for Pakistan’s economy by earning a huge revenue.

In this research we have presented a methodology to increase the interest of Pakistani
people in computer programming by providing a bilingual computer program development
environment in Urdu and English languages. This act may certainly open new dimensions of
teaching computer programming, for instance, by introducing computer programming at school
level. Furthermore, it may increase the interest of students and teachers to learn and teach
computer programming while experiencing to program in their national language. Lastly, in
technical terms, we have presented the visual design of such bilingual environment along with
architectural modification in the preprocessor for C++ language to support both Urdu and English
languages for writing computer programs.
Key Words: computer programming; Urdu language; programming in regional

languages; computer programming in Urdu.

Introduction

Every day computer science community faces new challenges regarding finding
out the solution of the problems faced by mankind. In order to solve such
challenging problems, programmers take support of powerful programming

South Asian Studies 31 (1)

306

languages that are designed to address the needs of a programmer (Verkroost &
Eliens, 2013). Along with the programming languages comes their programming
environment. These programming environments are created for professional use
and consist of many built in tools such as debugger, project management etc.
Ironically, majority of these programming languages are created to program the
computer in order to solve the problems.

It has been a research area in the computer science community that there
should be a programming language combined with a programming environment
that can be used for teaching purposes, for teaching novice students who are new
to the computer science and the programming world (Felleison 1998) (Farooq et
al. 2014). The basic problem with the programming languages is that, they have
their own complex syntax, constructs, error messages and unexpected outputs,
which are difficult to understand for novice programmers (Smith et al., 2010).
(Farooq et al. 2015). Moreover, In order to teach them, the instructor needs a deep
knowledge of computer internal architecture and working mechanisms. The reason
behind these facts is that these languages are not designed for students to learn
programming, rather they have been designed to solve the problems.

 In order to cope with this problem, instructors have created their own subsets
of the programming language (Depasquale 2002)(Farooq et al. 2015). These
subsets consist of some of the very basic constructs of the programming language.
The instructor teaches his created subset and by the time the students get familiar
with the programming, the instructor adds more items to his subset.

With the help of language subsetting, the instructors do manage to teach the
existing programming language to a novice programmer up to some extent, but
unfortunately the same technique cannot be applied to the programming
environment. The instructor cannot add, remove, or modify any component of the
programming environment, so their students have to code in the fully professional
programming environment that seems complex and messy to a novice programmer
(Farooq et al. 2015).

But the question is, are we expecting a novice programmer to build a
professional and reliable software application using all the tools that comes with
the environment? Also very few of these tools come with the language pack
facility, whereas majority of the tools uses English as their primary interface
language (Kurland et al. 1986). This makes it even more difficult for non-English
speaking novice students around the globe to get familiar with the tool.

The aim of this research is to focus on defining a subset of a programming
language that is helpful to the teachers and students for pedagogical and cognitive
activities. Furthermore, we intend to develop a programming environment that can
be totally customized according to the needs and understanding level of the novice
student.

Programming environment should be very user friendly, interactive and
should be according to the locale/region. To this end, we intend to augment the
programming environment to not only support writing code in English but also

Kamran Abid, Adnan Abid, Muhammad Shoaib Farooq, Uzma Farooq & Ansar Abbas
A Strategy for

 307

allow the users write code in Urdu language, which is the national language of
Pakistan. The syntax of the programming language should also be more readable,
less complex, and should gradually improve the learning curve of the student by
improvising according to the level of the student. With this kind of programming
language student can focus more towards logic and solution building rather than
worry about the syntax of the language.

If programming languages and their environments are designed in the local
speaking language, then novice students can learn programming and develop their
familiarity with the programming environment tool in a better and more
understanding way. The chances of understanding a problem increases when it is
explained in your own language. If programming language and their programming
environments are designed by keeping in mind the caliber and understanding level
of the students, then students can grasp the concepts of programming much
quicker and in more effective way.

This above mentioned technique would also help instructors to teach
programming in an easier, effective and in an interesting way. And once the
students grasp the basic concepts of the programming and also get themselves
familiarized with the basic functionalities of the IDE, the instructors can easily
shift their students, by putting minimum efforts, towards the use of professional
IDE’s and industry popular programming languages.

In this research, we intend to define an easy to learn subset of C++ which
should be more conformant to the evaluation framework defined in (Farooq et al.
2014). Apart from this, we also aim to design and develop a prototype of a user
friendly bi-lingual IDE with the support of Urdu and English languages that allows
the novices to write code using the defined subset of C++ in both languages. We
strongly believe that this will help the novice programmers learn computer
programming with ease.

Background and Related Work

GreenFoot (Hensiksen 2004) a programming language, comes along with its
highly interactive programming environment. It is designed to teach the concepts
of object oriented paradigms to novice students. Like GreenFoot there are other
programming languages such as Microsoft Small Basic (SmallBasic 2014) to teach
programming to secondary school students by making graphical and multimedia
applications using GUIs and Logo (Pea 1087) to teach programming to primary
school students using visual components. The problem with all these is that they
are all less relevant to the course curriculum. They distract the attention of the
students from the core issue of problem solving and they have their own syntax
which is not close to the professional programming language such as C++, Java
etc.

South Asian Studies 31 (1)

308

Karel, The Robot (Pattis 1981) is a tool that provides visual simulation of a
program, followed by its update version Karel++ that brought Karel into object
oriented age. The problem with the Karel is that its code syntax is very much
difficult and does not closely relate with any of the modern programming
language.

Alice (Cooper 2000) is another programming environment that focuses on
teaching object oriented skills by creating a 3-D virtual environment. Alice allows
students to write simple scripts to create, control and to simulate the 3-D models of
objects (e.g. cars) in a 3-D environment. The problem with Alice is that it focuses
more on graphics and event driven programming that distracts students from the
actual real life problems and the basic programming constructs used to solve that
problems. Furthermore Alice does not familiarize its students with the
programming language syntax and also doesn’t familiarize towards the use of a
professional IDE.

CS1 Sandbox project (Depasquale 2002) is a C programming development
made for beginners. It also offers the instructors to make subsets of the
programming language which in turn are applied on the programming
environment. CS1 is very much alike to our functionality but doesn’t provide any
multilingual support. All the students whether novice or intermediate are to
program in C++ language, which can be helpful for an intermediate student at, but
for novice student with zero experience of programming, it would be wise to
introduce the programming concepts in less formal way and quite easy to use
syntax. Furthermore the CS1 programming environment is also no multilingual
support and no event driven or automated programming facility.

Some research has been conducted to design truly educational programming
environments (Jimenez 2000) and the results reveal the attributes that a
programming environment must have in order to become a truly educational
programming environment.

Motivation for Bilingual Programming Environment

It is a fact that most of the available programming languages use the keywords of
the English language. There are several reasons for this, including the fact that
most of the programming languages have been developed in English speaking
countries including USA, UK, Australia, and Canada. Therefore, these languages
have been developed using the English language. Similarly, some other languages
which, although were not developed in English speaking countries e.g. Python in
Netherland, Ruby in Japan, are also in English language to present them to the
international audience. Lastly, some languages are influence by other languages
which were based on the English language, so they also use English keywords.

However, at the same time there has been some effort in developing languages
which use keywords from non-English languages, e.g. Dolittle, Easy etc. have
been developed using keywords in Japanese and Chinese. But, these languages
have not been able to get any appreciation at international level, due to the

Kamran Abid, Adnan Abid, Muhammad Shoaib Farooq, Uzma Farooq & Ansar Abbas
A Strategy for

 309

following reasons. Firstly, such languages have been created with the objective to
support native language speakers. Secondly, their syntax does not conform to the
requirements of professional imperative and functional languages.

Another approach has been used to create non-English programming
languages is to come up with non-English versions of any widely used existing
language(Hindawi, 2015). For instance, considering the widely used FPLs, it has
been observed that many non-English variants of these languages exist. Table 1
shows such variants for many different FPLs.

Table 1 Non English based Tools
Tool Title Supported Language Based on

Chinese C++ Chinese C++

Hindawi Programming language Indian C++

Jeem Arabic C++

Phoenix Arabic C++

Farsinet Persian C#

Hindi Programming language Hindi C#

Kumir Russian Pascal

LSE French Pascal

ZhPy Chinese Python

Perunis Russian Python

Expect outcomes of the Proposed Bilingual Programming
Environment

This research aims to address the problems faced by the students of different
degree programs in learning computer programming. This work aims to help the
students with the provision of a customized subset of C++ language that is more
conformant to the evaluation framework for a first programming language.
Furthermore, we also aim to provide a user friendly and bi-lingual IDE to help the
programmers learn computer programming in Urdu and English languages. To this
end, we would like to incorporate one of our existing published work to define a
pedagogically effective subset of C++. The user friendly IDE will enforce the
student write simple programs using simpler version of C++, with the support of
Urdu and English, and will certainly help the students learn computer
programming with more interest.

Proposed Integrated Development Environment

South Asian Studies 31 (1)

310

This section presents a tool which is a prototype implementation of the subset of
C++ language. This tool not only eliminates the use of the unwanted constructs
from C++, but also enforces the desired quality coding standards. The tool helps
the programmers write code in an editor, or alternatively allows the programmer to
write codes using template dialog boxes for different constructs. The tool
automatically generates syntax error free code through the values entered in the
fields of the dialog boxes.

Subsetting and preprocessing are two main operations, which help in
eliminating some constructs of C++, and help enforcing the prescribed usage of
certain other constructs of the language, respectively. However, it is pertinent to
note that the implementation of both these operations is non-trivial and requires
changes in the pre-processor of the language.

Supported Constructs

We focus on the programming constructs used in the CS1 course outline. It is
pertinent to mention here that these short listed constructs facilitate the
programmers to write simple programs in the main block. We have extracted these
constructs using the guidelines provided in (Farooq et al. 2014).We have included
variable declarations, arithmetic and Boolean expressions, and assignment
statements. Furthermore, we have included the if statement and have dropped the
switch statement, as the if statement is more comprehensive as compared to the
switch statement. The while loop has been selected from the available loops, as it
is closer in syntax with the if statement, and hence, is easy to learn. Lastly, from
the comments we have chosen end of line comments, as they are clear and less
prone to error, particularly for the novice programmers. Certainly, C++ is an
object oriented language, but the scope of CS1 courses in imperative first
approaches is restricted to basic programming constructs which do not include any
object oriented features.

In order to limit the language constructs for the IDE we have included those
constructs of C++ language which cover the scope of an introductory course in
computer programming. This includes the constructs presented in Table 2.

Table 2 Selected Constructs for Programming
Concepts Language Constructs

main block main function
Variables Declaration, initialization
Operators Arithmetic and Relational operators

Conditional Statement if statement
Iterations while loop

Input/Output Statements Console input and output
Comments Inline comments

Additional Constraints on Supported Constructs

Kamran Abid, Adnan Abid, Muhammad Shoaib Farooq, Uzma Farooq & Ansar Abbas
A Strategy for

 311

The tool implements all the conformance requirements set forth in (Farooq et al,
2014). for the improvement in C++ language to make it a better FPL, on the above
mentioned language constructs. It eliminates the usage of for and do/while loops,
and does not allow block and mega comments. Thus, this tool fully supports
feature uniformity with feature exclusiveness and does not offer any feature
multiplicity. Furthermore, it enforces the following recommended practices
through strict preprocessing:

Every variable should be initialized explicitly by the programmer or implicitly
by environment.

Variable name has been unique with parent as well as within child scope, so
here is no chance to scope overriding

Support less effort for writing simple programs by just selecting program
basic Skeleton without including core libraries.

It also provides support for writing basic input and output statement without
writing single line of code.

Basic C++ naming conventions have been supported and some constraints
such as variable names are case insensitive and declaration of the variable using
template is also supported by ensuring these rules.
Pretty printer has also been supported by environment for neat and clean properly
indented code.

Novice programming Environment support program editing in two ways i)
writes a program explicitly by key punching in program editor ii) writing program
implicitly through templates without writing any code implicitly with key punch.
This process ensures writing program without any syntax error.

Environment also supports bilingual programming by non-English
programmers. She can write code in her own selected language. She has also
option to convert her code written in native language into English language C++
code.

The program can be compiled with simple compile option through toolbar,
menu or shortcut key.

Similarly, program can be executed with a simple run option through toolbar,
menu or shortcut key.

It also generates simple and easily understandable error messages so that even
a novice user can easily identify the problem in the code. The environment
provides the facility to the user to modify the error messages according to their
own understanding.

The students can benefit from already provided sample example codes, and
can also add sample codes as an example.

Eazy Programming Environment

As a prototype implementation of this research work a programming environment
named Eazy has been developed. Eazy only allows to write programs using a

South Asian Studies 31 (1)

312

defined subset of C++ language, and enforces strict coding rules. The subsetting
helps simplify the learning curve for the novices, while the enforcement of strict
rules helps them writing unambiguous and good quality codes, thus avoids
accidental mistakes.

Main Code Editing Options

The figure 1 shows the screenshot of the main user interface for novice
programmer where a text editor is provided with the support of many different
templates on the left side for generating code for various language constructs. The
programmer can either write a code in the code editor, or may use any of the
templates. This prototype implementation provides the templates for variable
declaration, console input/output, assignment operator, if condition, and while
loop. The figure also shows how the IDE helps the novice programmer in writing a
Boolean condition in the if statement using a template. The novice programmer
can save her code on hard disk in a file, and can open any existing file as well.

Additional Features

The Eazy IDE also gives the provisions of adding a default code which adds the
default code for main function in the editor. Similarly, it also helps in clearing the
editor so as to write a new code, it offers the support of indentation to beautify the
presentation of the code in the text editor. Likewise, the text editor includes pretty
printer which gives different colors for comments, keywords, and message strings.
The sample code written in Figure 1 highlights the functionality of pretty printer

Kamran Abid, Adnan Abid, Muhammad Shoaib Farooq, Uzma Farooq & Ansar Abbas
A Strategy for

 313

and code indenter. Furthermore, it also provides example codes to make the
learning easier for the novice programmers. The student can load different
example codes on different topics, e.g. Figure 2 shows the screenshot where a
student is choosing an example from the topic Integers.

Another important additional feature in Eazy is the provision of simpler error
messages to the novice programmers, which would certainly help them understand
their mistakes easily. Table 3 shows the conventional error messages generated by
traditional compilers, and the corresponding simplified error messaged which are
presented by Eazy to the novice programmers. These simpler error messages are
less technical and help the novice programmer to find errors and correct their code.

Table 3: Simple Error Messages for Novices
Code C++ Error

Messages/Warnings
Eazy Error Messages

void main(){
 cout<< “Hello World”;

Unexpected End of File found } is Missing

main(){
 cout<< “Hello World”;
}

‘main' : function should return
a value; 'void' return type
assumed

void is missing in main

void min(){
 cout<< “123”;
}

unresolved external symbol
_main

'main' is missing or not
properly used

void main(){
 int x=0
}

Missing ‘;’ ';' is missing or not properly
used

void main(){
 int x=7;
 if(x>5){
 cout<< “hi”;
 else {
 cout<< “bye”;
 }
}

illegal else without matching
if
fatal error C1004: unexpected
end of file found

} is Missing in If Statement

void main(){
 int x=;
}

syntax error : ';' Variable value is missing

if(2+3){
cout<< “true”
}else{
cout<< “false”;
}

No Error Arithmetic Operator (+,-,*,/)
is not allowed here

Edit, Compile, and Execute Options

Eazy is also equipped with the support of conventional menu options, toolbars, and
shortcuts, just like any traditional code editor. The programmers can use any of the
three ways to invoke a certain functionality. The editor exposes rich editing
options available in traditional text editors, including the settings for font color,
size; cut, copy, paste; and find and replace options. Furthermore, the user interface
also supports multi-tab editors in which the user can open multiple files at a time,
and can perform editing on multiple open programs. The user interface also

South Asian Studies 31 (1)

314

provides separate buttons and shortcuts to compile and execute the code. Figure 3
shows the main menu bar and ribbon that display the above mentioned features.

Similarly, the output of a program will be in the form of some console
application, which is terminated after execution, in order to hold the output on
screen, the pre-processor auto-detects the end of main function and adds the
necessary code to hold the output on the screen.

Incorporating Urdu Language in the IDE

In this work, we have developed a programming language which is based on C++,
but certainly on the improved C++ that we obtained in (Farooq et al.,2014). We
argue that by defining a mapping between the English keywords of C++ to the
Urdu keywords can help us writing code in Urdu. In such a scenario, the only
requirement is to map the code written in Urdu to its corresponding English
version, and then compile and execute the English version of the code. Whereas,
the error messages and output can also be shown in Urdu language.

The inclusion of Urdu in the IDE requires modification in the preprocessor of
the language. Figure 4 shows the flow of the execution of the Urdu source code to
its compiled output. The Urdu source code is converted into corresponding English
source code using the bilingual mapping algorithm which uses keyword mapping,
as well as, character set mapping files (Humayoun, 2007). This, in turn, produces
the corresponding English language code of the input program. Now, this code can
be compiled with any existing standard compiler for C++ language. However, the
error/success messages are obtained from the compiler and they are again
translated into corresponding Urdu messages, before they are reported to the
programmer.

Kamran Abid, Adnan Abid, Muhammad Shoaib Farooq, Uzma Farooq & Ansar Abbas
A Strategy for

 315

Environment also supports Urdu program editing in the same way as in
English, i.e. i) write program explicitly by key punching in program editor ii)
writing program implicitly through templates without writing any code implicitly
by key punch. Second method ensures writing program without any syntax error as
shown in Figure 5.

Figure 5 Urdu Programming Environment
To this end, the translation requires the following two major ingredients:
i) Keyword Mapping

English Code
of Eazy

Keyword
Mapping

Character
Set Mapping

Bi-Lingual
Mapping

Algorithm

Urdu Source
Code

Normal
Compilation

South Asian Studies 31 (1)

316

ii) Character set file
Table 4 shows English to Urdu keyword mapping given in (khan 2011),

whereas Table 5 shows the mapping of English character set onto the Urdu
character set.

Table 4 keyword Mapping Table
Sr.No. English Urdu

1 void عارى
2 main پروگرام
3 int مكمل
4 if اگر
5 else ورنھ
6 cout لكھو
7 cin پڑھو
8 while جبتک

Table 5 Character set mapping File

Sr.No. English
(Small)

Urdu English
(Capital)

Urdu

1 a ا A آ
2 b ب B ب
3 c چ C ث
4 d د D ڈ
5 e ع E ع
6 f ف F ف
7 g گ G غ
8 h ھ H ح
9 i ی I ا
10 j ج J ض
11 k ک K خ
12 l ل L ل
13 m م M ا
14 n ن N ں
15 o ہ O ة
16 p پ P ٔ
17 q ق Q ق
18 r ر R ڑ
19 s س S ص
20 t ت T ٹ
21 u ء U ء
22 v ط V ظ
23 w و W و
24 x ش X ژ
25 y ے Y ے
26 z ز Z ذ

Conclusion and Future Directions

In this research we have argued to teach computer programming to Pakistani
students in their national language. We have presented some existing tools and
variants of programming languages which have been developed in languages other

Kamran Abid, Adnan Abid, Muhammad Shoaib Farooq, Uzma Farooq & Ansar Abbas
A Strategy for

 317

than English. In our neighboring countries Indians and Chinese people have
developed non-English programming environments in their national languages
Hindi and Chinese. But no such environment exists for Pakistani students to study
in Urdu. To this end, we have presented the need of a bilingual programming
environment. Our proposed environment supports the users to write computer
programs in English as well as Urdu language.

We have also identified a subset of C++ programming language that should be
used in the first course of computer programming. We also apply constraints on
the selected constructs so as to minimize the learning curve for the programmers.
We have presented initial design and mapping from English to Urdu language
along with the visual user interface for our proposed IDE. Furthermore, in
technical terms, we have highlighted the modification in the existing preprocessor
of the language to incorporate Urdu language for coding.

In future, we intend to develop this bilingual programming environment to
materialize the idea and theoretical concepts presented in this research work. We
also plan to evaluate the effectiveness of this new IDE by performing empirical
analysis on the developed IDE, so as to figure out the impact that inclusion of
Urdu language in the IDE has created in order to produce more apt computer
programmers.

References

Abid, A., Farooq, M. S., Farooq, U., Abid, K., & Shafiq, M.(2015) A Strategy for the

Design of Introductory Computer Programming Course in High School. Journal of
Elementary Education, 25(1), 145-165.

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory programming
concepts. In Journal of Computing Sciences in Colleges (Vol. 15, No. 5, pp. 107-116).
Consortium for Computing Sciences in Colleges.

DePasquale, P. (2002). Subsetting language elements in novice programming environments.
In Proceedings of the RESOLVE Workshop (pp. 108-111).

Farooq M.S, Khan S.A, Ahmad F, Islam S, Abid A (2014) An Evaluation Framework and
Comparative Analysis of the Widely Used First Programming Languages. PLoS ONE
9(2): e88941. doi:10.1371/journal.pone.0088941.

Farooq, M. S., Abid, A., Khan, S. A., Naeem, M. A., Farooq, A., Abid, K. (2012). A
Qualitative Framework for Introducing Programming Language at High School,
Journal of Quality and Technology Management, Punjab University, Pakistan. 8(2).

Farooq, M. S., Khan, S. A., Abid, K., Ahmad, F., Naeem, M. A., Shafiq, M., & Abid A.
(2015). Taxonomy and design considerations for comments in programming
languages: a quality perspective. Journal of Quality and Technology Management,
Punjab University, Pakistan. 10(2).

Farooq. M.S, Khan S.F, Ahmed. F, Islam. S, Abid A, (2014) Choice of Pedagogical
Approaches towards First Programming Languages, J. Appl. Environ. Biol. Sci, vol
4(7), pp:311-317..

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (1998). The DrScheme project:
an overview. ACM Sigplan Notices, 33(6), 17-23.

Henriksen, P., & Kölling, M. (2004). Greenfoot: combining object visualisation with
interaction. In Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications (pp. 73-82). ACM.

South Asian Studies 31 (1)

318

Hindawi Programming System, http://hindawi.in/, Accessed 10 October,2015.
Humayoun, M., Hammarström, H., & Ranta, A. (2007). Implementing Urdu Grammar as

Open Source Software. Corpus, 1, 23-696.
Jiménez-Peris, R., et al.(2000). Towards truly educational programming environments. In

Computer science education in the 21st century (pp. 81-111). Springer New York.
Khan, A. U., Ayyub, K., & Khan, H. F. U: (2011) A Computer Programming Language in

Urdu.
Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A study of the development

of programming ability and thinking skills in high school students. Journal of
Educational Computing Research, 2(4), 429-458.

Pattis, R. E. (1981). Karel the robot: a gentle introduction to the art of programming. John
Wiley & Sons, Inc..

Pea, R. D. (1987). Logo programming and problem solving.
Small Basic 1.0 is here! - Small Basic - Site Home - MSDN Blogs. Blogs.msdn.com. 2011-

07-12. Retrieved 2014-03-08.
Smith D., Lameras, P., Moumoutzis, N. (2010). Using educational programming language

to enhance teaching in computer science” Edge conference.
Verkroost, Y., & Eliens, a. (2013). Seriousify and prettify our educational system!.

Biographical Note

Dr. Kamran Abid Assistant Professor, Punjab University College of Information
Technology, University of the Punjab, Lahore, Pakistan.
Dr. Adnan Abid Associate Professor and Director Academics, Department of
Computer Science, University of Management and Technology, Lahore, Pakistan.
Dr. Muhammad Shoaib Farooq Associate Professor and Director Graduate
Studies, Department of Computer Science, University of Management and
Technology, Lahore, Pakistan.
Uzma Farooq Assistant Professor, Department of Computer Science, University
of Management and Technology, Lahore, Pakistan.
Ansar Abbas is a post-graduate student at University of Management and
Technology, Lahore, Pakistan.
